3.710 \(\int \frac{x^m}{\sqrt{a+b x}} \, dx\)

Optimal. Leaf size=46 \[ \frac{2 x^m \sqrt{a+b x} \left (-\frac{b x}{a}\right )^{-m} \, _2F_1\left (\frac{1}{2},-m;\frac{3}{2};\frac{b x}{a}+1\right )}{b} \]

[Out]

(2*x^m*Sqrt[a + b*x]*Hypergeometric2F1[1/2, -m, 3/2, 1 + (b*x)/a])/(b*(-((b*x)/a))^m)

________________________________________________________________________________________

Rubi [A]  time = 0.010974, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {67, 65} \[ \frac{2 x^m \sqrt{a+b x} \left (-\frac{b x}{a}\right )^{-m} \, _2F_1\left (\frac{1}{2},-m;\frac{3}{2};\frac{b x}{a}+1\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[x^m/Sqrt[a + b*x],x]

[Out]

(2*x^m*Sqrt[a + b*x]*Hypergeometric2F1[1/2, -m, 3/2, 1 + (b*x)/a])/(b*(-((b*x)/a))^m)

Rule 67

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[((-((b*c)/d))^IntPart[m]*(b*x)^FracPart[m])/
(-((d*x)/c))^FracPart[m], Int[(-((d*x)/c))^m*(c + d*x)^n, x], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m]
 &&  !IntegerQ[n] &&  !GtQ[c, 0] &&  !GtQ[-(d/(b*c)), 0]

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rubi steps

\begin{align*} \int \frac{x^m}{\sqrt{a+b x}} \, dx &=\left (x^m \left (-\frac{b x}{a}\right )^{-m}\right ) \int \frac{\left (-\frac{b x}{a}\right )^m}{\sqrt{a+b x}} \, dx\\ &=\frac{2 x^m \left (-\frac{b x}{a}\right )^{-m} \sqrt{a+b x} \, _2F_1\left (\frac{1}{2},-m;\frac{3}{2};1+\frac{b x}{a}\right )}{b}\\ \end{align*}

Mathematica [A]  time = 0.0229852, size = 46, normalized size = 1. \[ \frac{2 x^m \sqrt{a+b x} \left (-\frac{b x}{a}\right )^{-m} \, _2F_1\left (\frac{1}{2},-m;\frac{3}{2};\frac{b x}{a}+1\right )}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[x^m/Sqrt[a + b*x],x]

[Out]

(2*x^m*Sqrt[a + b*x]*Hypergeometric2F1[1/2, -m, 3/2, 1 + (b*x)/a])/(b*(-((b*x)/a))^m)

________________________________________________________________________________________

Maple [F]  time = 0.02, size = 0, normalized size = 0. \begin{align*} \int{{x}^{m}{\frac{1}{\sqrt{bx+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m/(b*x+a)^(1/2),x)

[Out]

int(x^m/(b*x+a)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{m}}{\sqrt{b x + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^m/sqrt(b*x + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{m}}{\sqrt{b x + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

integral(x^m/sqrt(b*x + a), x)

________________________________________________________________________________________

Sympy [C]  time = 1.23456, size = 36, normalized size = 0.78 \begin{align*} \frac{x x^{m} \Gamma \left (m + 1\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, m + 1 \\ m + 2 \end{matrix}\middle |{\frac{b x e^{i \pi }}{a}} \right )}}{\sqrt{a} \Gamma \left (m + 2\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m/(b*x+a)**(1/2),x)

[Out]

x*x**m*gamma(m + 1)*hyper((1/2, m + 1), (m + 2,), b*x*exp_polar(I*pi)/a)/(sqrt(a)*gamma(m + 2))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{m}}{\sqrt{b x + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate(x^m/sqrt(b*x + a), x)